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Abstract
Using a three-dimensional local spin-density functional method, we investigate
the electronic structure of quasi two-dimensional ellipsoidal quantum dots with
elliptical deformation. Changes in the electron addition energy spectra and
spin polarization are investigated as a function of the number of electrons and
the elliptical deformation on the lateral direction confinement potential, and
compared with those of a circular dot which shows a shell structure. Especially,
we find that, due to the electron–electron interaction, the anisotropy of an
elliptical dot is higher than that of a bare potential by ∼ 1.2 for experimentally
realistic potentials.

The identification and understanding of the electronic structure of quantum dots is currently a
major interest of the nanotechnology community [1,2]. In particular, single electron addition
techniques together with the realization of clean and highly symmetric vertical quantum dots
[3] offer the possibility to manipulate and study dots with a small well-defined adjustable
number of electrons. A quasi two-dimensional (2D) shell structure, such as the enhancement
of electron addition energies for certain number of electrons and spin-state variations according
to Hund’s first rule, is clearly observed in circular dots [3]. This experimental identification
of the shell structure is also in good agreement with theoretical model calculations [4–7].

While the full rotational symmetry of a circular dot leads to the most prominent shell
structure and well-defined physical pictures, there has also been other recent experimental
[8] and theoretical [4,7,8] efforts to identify the role of the interplay between the circular
symmetry breaking in the external potentials and the electron–electron interaction on the
electronic structure of quantum dots. The finite electron addition spectra in quantum dots are
closely related to the physics of single electron transistor applications, and the manipulation
of the electron-spin states is also an interesting subject in magnetoelectric and optoelectric
applications [2,9]. Since the presence of the asymmetry in the confining potential should be
experimentally more realistic, it is important to understand the role of the symmetry breaking
on the electronic structure of quantum dots due to such as an impurity [10] or the potential
deformation.
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In this work, we report a study of the electronic structure of three-dimensional (3D)
elliptically shaped quantum dots with elliptical deformation in the lateral-direction confinement
potential. Performing self-consistent total energy calculations based on the spin-dependent
Kohn–Sham (KS) density functional theory (DFT) [11] in the local density approximation
(LDA) [12], we observe changes in the electron addition energy spectra and spin configurations
as elliptically deforming the lateral confinement potential starting from a circular dot for a fixed
dot-growth direction potential. One of us (IHL) has previously performed a 3D calculation
of elliptical dots, but the confinement potentials along the lateral direction employed in the
work were too strong compared with experimentally realistic values [5]. Considering recent
experimental developments [8] and the theoretical and technical importance of the ability to
modify and understand the electronic structure of quantum dots, we report here a more detailed
3D study of the effects of the elliptical deformation on a circular quantum dot with potential
parameters taken from recent experiments.

Our calculations for the quantum dots in GaAs host material (dielectric constant ε = 12.9,
effective massm∗ = 0.067me) are based on the effective mass approximation, so that the scaled
length and energy units are respectively 101.88 Å and 10.96 meV. The strong confinement along
the dot-growth direction z caused by band offset in the quantum wells is assumed to be parabolic
withωz. The lateral confinement potential in the x−y plane is approximated by an anisotropic
harmonic oscillator potential with frequencies ωx and ωy , with a constraint of ω = √

ωxωy
that corresponds to conserving the area of deformed quantum dots [8]. Hence, defining the
ellipticality of quantum dots as the ratio of harmonic oscillator frequencies, δ = ωx/ωy , the
total external potential of our quasi 2D quantum dot can be written in the Cartesian coordinate
as

Vext (�r) = 1

2
ω2

(
δx2 +

y2

δ

)
+

1

2
ω2
zz

2. (1)

In addition to ωz = 45 meV as in our previous investigations [5,10], experimentally realistic
lateral-direction potential parameter ω = 5 meV has been chosen [8], which is significantly
smaller than that of our previous investigations, (ωx ,ωy) = (10,20), (7,10) meV. The 3D
and 2D LDA exchange correlation functionals are about equally applicable in the range of
20 � ωz/ω � 30 although 3D functional is definitely better [13] for ωz/ω ∼ 10. We have
tested the effect of ωz on the electronic structure of the model by varying the ωz up to 65 meV.
No noticeable changes in addition energy spectra are found. KS total energy calculations of
E(N, δ) for 1 � N � 13 have been performed with a 19-point higher-order finite-difference
method and grid spacing h = 0.3 a.u.∗ [5,10,14], as varying δ from 1.0 to 2.0 with an increment
of 0.1. The chemical potential of anN -electron system for a fixed δ is obtained by two different
total energy calculations using the definitionµ(N) = E(N)−E(N−1)withµ(1) = E(1). So,
the addition energy for anN -electron system,�(N) = µ(N+1)−µ(N), which is proportional
to the gate voltage change between two successive conductance peaks in Coulomb oscillation
measurements, is obtained by three different total energy calculations

�(N) = µ(N + 1)− µ(N)

= E(N + 1) + E(N − 1)− 2E(N). (2)

We first consider variations of chemical potentials and single electron addition energy
spectra with elliptical deformation of the dot. Variations of µ(N) versus δ are shown in
figure 1, which reminds one of the chemical potential dependence on the magnetic field [2].
The first three lines vary monotonically, while other higher lines fluctuate up and down with
the increase of deformation parameter. We further observe that they shift in pairs, which is
also analogous to the chemical potential variation with the magnetic field. We also obtain
�(N) for a fixed δ (using equation 2), which corresponds to the spacing between the µ(N)
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andµ(N +1) lines in figure 1. These are shown for δ = 1.3, 1.5, 1.7, and 2.0 in figure 2 together
with that of the circular dot (δ = 1). In a circular dot, �(N) spectra show large peaks for
certain numbers of electrons, especially for N = 2, 6, and 12, which represent shell structures
[3,5]. These peaks are still observed, but are much more suppressed for δ = 1.1 . For δ = 1.2,
they are more suppressed and theN = 12 peak disappears first. For further deformations, e.g.
δ = 1.3, most peaks of the circular dot are washed out except for N = 2 as shown in figure
2. However, interestingly, we again observe pronounced peaks especially at N = 4, 8, and 12
for δ = 1.7. These newly formed peaks subsequently disappear with further deformations.
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Figure 1. Calculated chemical potentials µ(N) = E(N) − E(N − 1) versus the deformation
parameter δ = ωx/ωy . The lowest line µ(1) is the total energy of the single-electron system E(1).
Upward arrows denote the critical deformation parameters δc where spin configurations change.

Another variable of interest is the total spin of the ground states. Spin configurations in
the circular dot follow the Hund’s rule in open-shell regions [3,5], and change as ( 1

2 → 0) →
( 1

2 → 1 → 1
2 → 0) → ( 1

2 → 1 → 3
2 → 1 → 1

2 → 0) → 1
2 , where parentheses

indicate shells as will be discussed later. As the dot is deformed, we find variations in
the ground-state spin state by 1 for certain N , S(N), at the critical deformation parameter,
δc(N), as shown in figure 1. Critical deformation parameter values are indicated by upward
arrows. Note that we do not have spin-state variations for odd-number of electrons except
S(9) = 3

2 → 1
2 at very small deformation δc(9) = 1.08. On the other hand we observe

variations in spin configuration for all even-N electrons except S(2) = 0: S(4) = 1 → 0
at δc(4) = 1.17, S(6) = 0 → 1 → 0 at δc(6) = 1.52 and 1.87, S(8) = 1 → 0 at
δc(8) = 1.16, S(10) = 1 → 0 → 1 → 0 at δc(10) = 1.09, 1.57, and 1.86, and, finally,
S(12) = 0 → 1 → 0 at δc(12) = 1.27 and 1.42. Hence, in figure 1 we find two main
regions where spin-state changes in an interesting manner: one is at δ ∼ 1.0 with spin-state
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Figure 2. Addition energies �(N) = µ(N + 1)− µ(N) versus the number of electrons N for δ =
1.0, 1.3, 1.5, 1.7, and 2.0.

variation as mentioned above, and the other is δ ∼ 1.6 − 1.8 with a spin configuration change
as ( 1

2 → 0) → ( 1
2 → 0) → ( 1

2 → 1 → 1
2 → 0) → ( 1

2 → 1 → 1
2 → 0) → 1

2 . Note that
these two parameter ranges are where large�(N) peaks are found in figure 2. For most other
ranges of δ, spin polarizations oscillate between S = 1

2 and 0 as electrons are added, except
for δ ∼ 1.1 with 1

2 → 0 → 1
2 → 1 → 1

2 → 0 → 1
2 → 1 → 1

2 → 0 → 1
2 → 0 → 1

2 , which
is a variation of δ = 1 spin-state variation, and for δ ∼ 1.3 with 1

2 → 0 → 1
2 → 0 → 1

2 →
0 → 1

2 → 0 → 1
2 → 0 → 1

2 → 1 → 1
2 .

Now, we argue that these changes of electron addition energy spectra and spin-state
variations with elliptical potential deformation can be understood by observing the development
of single-particle energy states. First, we consider the noninteracting system whose (doubly
degenerate) eigenvalues with the deformation are given in figure 3. In the circular dot (δ = 1),
eigenvalues have doubly and triply degenerate second and third set of states (A and B), which
are equally separated by ω = 5 meV and will be completely filled for N = 6 and 12. With
the deformation in the lateral confinement potential, degeneracies of single-particle states
associated with the circular symmetry of the potential are lifted, and the spacings between
single-particle states in different degeneracy groups of the circular dot become smaller.
However, note that the eigenvalues develop degeneracies at two other deformation parameter
values, δ = 1.5 and 2.0. At δ = 1.5, they are doubly degenerate at the sixth state (C), and will
be completely filled at N = 14. At δ = 2.0, degeneracies of the noninteracting eigenstates
occur at the third and fifth levels (D and E), each of which should be completely filled for
N = 8 and 12 electrons.

Circular dots, 2D shell structures described above, such as spin compensations and large
�(N) at N = 2, 6, and 12, analogous to He, Ne, and Ar in the atomic physics, and the Hund’s
rule spin-state variation, are experimentally observed [3], and are known to be well accounted
for by the noninteracting eigenvalue spectrum, a constant interaction, and corrections due to
the exchange. Assuming that the noninteracting picture of eigenvalue spectra in figure 3 is
also transferred in other ranges of deformation parameter values, we expect the breaking of the
shell structure in the circular dot with deformation, or the decrease of the peaks in the electron
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Figure 3. Noninteracting single-particle eigenvalues as a function of δ. Each state is doubly spin-
degenerate. Lines indicate the states relevant to our study of N up to 13. A, B, C, D, and E are
degenerate points. See the text.

addition energy spectra and the break-down of Hund’s rule spin-state variations. With further
deformation, however, we can expect the Hund’s rule spin-state variation at δ = 1.5, and
pronounced shell structures, or enhanced addition energies at N = 4, 8, and 12, and Hund’s
rule spin-state variation, ( 1

2 → 0) → ( 1
2 → 0) → ( 1

2 → 1 → 1
2 → 0) → ( 1

2 → 1 →
1
2 → 0) → 1

2 , at δ = 2.0. Note that there are two main physically competing effects in
these descriptions: one is the energy lowering by the exchange coupling, the maximum of
which is obtained in degenerate states present when the symmetry of the external potential is
dominant. The other is that by the splitting of eigenvalues with introduction of asymmetry
in the external potential, which lowers the total energy by making an electron, which was
formerly in a degenerate state of a symmetry case, to be able to occupy the lower-energy level
state.

Comparing these descriptions based on the noninteracting eigenvalue spectra with our
calculation results, we observe that the general picture holds well, but with δ shifted to smaller
values: spin-polarized state at N = 12 occurs at δ ∼ 1.3 rather than at 1.5. Also, another shell
structure, such as pronounced addition energies at N = 4, 8, and 12 and the spin-configuration
variation according to Hund’s rule, are observed at δ ∼ 1.7 rather than at 2.0. So, we can
conclude that the effective potential, or the self-consistent potential, of elliptically shaped dots
is more anisotropic than that of the bare potential due to the electron–electron interaction by
δeff /δbare ∼ 1.15−1.25, or the electron–electron interaction supports more elongated electron
configurations along the weak confinement potential axis in deformed quantum dots.

Now, to make the above findings more quantitative, we consider the LDA KS eigenvalues
for the 12 electron system for different values of deformation parameter δ shown in figure
4. Before proceeding, we approximately identify the highest occupied (HO) and lowest
unoccupied (LU) eigenvalues of N -electron system as the chemical potentials of N and N + 1
electron systems [11]:

µ(N) ≈ εLDAHO (N) µ(N + 1) ≈ εLDALU (N). (3)
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While we have to remind the reader that the LDA KS eigenvalues do not have any
strict physical meaning, [11] we expect these relations will give a good qualitative picture
of interacting systems. Then, the (N + 1)-th electron-addition energy for an N -electron
system, �(N), is approximately equal to εLDAg (N) ≡ εLDALU (N) − εLDAHO (N). Now, in figure
1 for N = 12, we find that the originally triply degenerate third level (N = 7 − 12) in the
noninteracting description for δ = 1.0 is transformed into a two-fold degenerate third state
(N = 7 − 10) and a single fourth state (N = 11 − 12) after the inclusion of electron–electron
interaction. Big εLDAg (12) at δ = 1.0 indicates a large addition energy and subshell closure
observed in figure 2. Note a similar behaviour of eigenvalue spectra, a signature of the shell-
structure, at δ = 1.7 instead of δ = 2.0, which confirms that the effective ellipticality of
a self-consistent potential is larger than that of a bare potential. In addition, the splitting
between up and down electron eigenvalue spectra and the collapse of εLDAg (12) at δ = 1.3,
which represents a spin polarization S(12) = 1, indicates that the effective ellipticality of the
interacting system at δ = 1.3 corresponds to that of the noninteracting system at δ = 1.5 in
figure 3.
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Figure 4. The development of KS LDA eigenvalues for the 12-electron system with δ. Left and
right horizontal lines represent the eigenvalue spectra of spin-up and -down states. Total spin-state
for δ = 1.3 is S(12) = 1. The degeneracy factor 2 in the panel for δ = 1.0 represent doubly
degenerate states.

Finally, we comment on the connection between our work and a recent experimental
study in [8]. Austing et al suggested that the anisotropy of their elliptically shaped dots in
practice can be much higher than that given by simply considering the geometry of the device
mesa in which the dot is located by observing the magnetic field dependence [8]. Hence, our
calculations can be considered as a direct confirmation of their proposition. However, we also
note that the ellipticality of their dots are not well-defined, and determining δ is quite hard
in the experiments. Actually, the geometry of their dots are rectangular rather than elliptical,
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hence direct comparisons, for example between their addition energy data and our calculation
results, is not possible. Based on our study, we may suggest that when manufacturing a dot
in the signature of the shell structure of δ = 2.0, it is found that we can confirm the degree
of elliptical symmetry of their dots and give a definite relationship between δ and geometrical
values.

In summary, we have studied the electronic structures of ellipsoidally deformed quantum
dots with 3D local spin-density functional calculations. They indicate that the elliptical-
deformation on a circular dot in general breaks the shell structure and significantly affects its
electronic structure. Calculation results are explained by examining the development of the
non-interacting and the corresponding KS single-particle energy spectra with the deformation
on external potentials. Especially, we find that the anisotropy of an elliptical dot is higher
than that of a bare potential by δeff /δbare ∼ 1.2 due to the electron–electron interaction in the
experimentally realistic external potential parameters, which is in agreement with the recent
suggestion based on the magnetic field dependence experiments [8].
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